
7. Analogue simulation in Alecsis 
In time-domain analogue simulation, system of equations that describes the analogue circuit (system) is 

composed and solved in many time instants. If the circuit is nonlinear, the linearized system is created and solved in 
many iterations in every time instants, until the convergence occurs. Therefore, there are two loops - time-domain 
(outer) loop and iterative (inner) loop. The control of time-step size and convergence control are described in 
Chapter 5. In this chapter, built-in models and model description in AleC++ will be described. 

As other circuit simulators, Alecsis is forming system of equations component by component, not equation 
by equation. That means, contribution of each component is determined as a "stamp", that is added to the system of 
equations. Therefore, discretization of differential equations, and linearization of nonlinear equations, is performed 
when the stamp is defined. To model the component, means actually to determine the stamp. Of course, AleC++ 
hides many formal aspects of such model description from the user, so the user has to describe the model equations, 
rather than the stamp itself. 

One can conclude easily that the stamps of linear time-independent components are constant throughout the 
simulation. Therefore, these calculations should be performed out of both simulation loops. Time-dependent linear 
components would have stamps that change in every time instant, so these calculations should be pulled out of the 
iteative loop. Finaly, nonlinear components have stamps that has to be recalculated in every iteration. For that 
reason, model designer can use process synchronization, as described in Chapter 5.   

There are no many language constructs that are specific for analogue simulation. Chapter 5, giving general 
overview, applies in full. Analogue circuits can be described structurally, combined with a functional description, or 
using purely functional description (command eqn). 

103 



104 Alecsis 2.3 - User’s manual 

7.1. Built-in analogue models 

Alecsis has a set of built-in SPICE-like models. Alecsis should not be used as a replacement of SPICE, but 
rather for simulation using new models, that are not available in SPICE. However, it was useful to have a set of 
built-in models, that can be used for SPICE-like simulation, and also as a basis for structural and combined 
structural-functional modelling. 

7.1.1. Resistor, capacitor, inductor, and ideal sources 

Basic components are resistor, capacitor, inductor, ideal current and ideal voltage source. All such 
components have two terminal nodes (in AleC++ terminology, two terminal links of type node). In Alecsis, they 
have only one parameter, named value, representing resistance, capacitance, inductance, current or voltage, 
respectively. That means, they are defined without the model card. 

These elements allow shorthand notation. 

resistor r1, r2; 
capacitor cload, c2; 
cgen i1; 
vgen vdd; 
inductor l1; 
 
r1 (n1, 0) value = 3.4k;        // 3400 ohms 
r2 (n1, n2) 2.7k;               // short of value = 2.7k 
c2 (n2, 0) { value = 2.7k; }    // long, but legal 
i1 (0, n2) 1mA; // current has direction from 0 to n2 
vdd (0, n3) 5v; // 0 is 'positive' terminal, voltage of n3 is -5V 
l1  (n1, n5) 5uH; 

In the description given above, you can see that such parameters allow shorthand notation, where the 
keyword value is omitted. Nodes n1, n2, etc., represent unknown quantities in the system of equations. 

Note: Node name 0 (number zero) is reserved for ground node. 

Note: For ideal voltage source modelling and the inductor modelling, the branch current, i.e. current 
through the element is necessary. Therefore, every time when we connect such an element, a new link of type 
current is created. Such current carries the name of the element (vdd and l1 are two currents in the example 
above). Creation of such new link, that is also an unknown quantity in the system of equations, is hidden from the 
user. However, one might need that current somewhere else -- as a result in command plot, or as a controlling 
variable in some other model. It can be accessed as any other link, using its name. This is the same as in SPICE. 

We wanted to have user-defined models that have same characteristics as built-in components. It is already 
mentioned in Chapter 5, that the module can return link under its name. This is obviously intended for 
modelling of different voltage generators, where the current flowing through the branch can be returned to the 
hierarchically higher level. That current carries the name of the module. 

In the example above, declarations can be omitted if we use implicit declarations given in standard header 
file alec.h. Without the declarations, the above code is very similar in structure to SPICE input file. 

From the components given above, resistor, ideal current and ideal voltage source are linear time-
independent models. Capacitor and inductor are linear, but time-dependent models, as time derivatives appear in 



7. Analogue simulation in Alecsis 105 

model equations. Time derivatives are discretized using formulae given in Chapter 5, where the time-step size is 
changing during the simulation run. 

7.1.2. Built-in signal generators 

Alecsis does not have many built-in signal generators. This is not a drawback since the user can define new 
signal generators easily. Some models already exist in model library. For such description, one can use ideal voltage 
and current source as a structural basis, and can add signal function easily in the functional part of the model - an 
example of combined structural-functional modelling. Such models are used the same as built-in models. 

For example, pulse generator is not an built-in component, although an unavoidable element of time 
simulation. It is described as a module whose declaration is stored in a standard library "alec.h", and the body in 
the appropriate library (alec.ao). You can find more details about this model in the appendix on standard libraries of 
AleC++. 

Actually, built-in signal generators are here for historical reasons, as they were needed before language 
AleC++ was completed. 

7.1.2.3. Piecewise linear signal generators 

Piecewise linear (PWL) sources are built-in components in Alecsis. There are voltage and current piecewise 
linear generators, declared as vpwl and cwpl. 

It is defined time-value pairs, as in this example: 

vpwl vin; 
 
vin (n1, 0) { 2, 3;  4, -4;  6s, -4V;  8.0s, 1; } 

The waveform of this voltage generator is given in Fig. 7.1. 

 

Figure 7.1. Waveform of piecewise-linear voltage generator, given by 4 time/voltage pairs. 



106 Alecsis 2.3 - User’s manual 

The waveform is given by time/voltage pairs. The pairs have to be enclosed in parentheses, regardless of the 
number of points.  

If the time instant of the first pair is greater than 0, the voltage value assumes the constant value between t=0 
and the first pair, as in the example above. If the last time/value pair is before the tstop, the voltage keeps the 
constant value until tstop. Therefore, if there is only one pair, such voltage generator behaves as ideal voltage 
source of constant value. Similar rules apply for the current generator of type cpwl. 

As any other voltage generator, vin in the example above generates link of type current. The current 
carries the same name, vin. 

The number of parameters of such generator is not fixed. However, it need not to be a built-in element. 
AleC++ allows realization of a module where the action block has variable number of parameters (see 
Chapter 5 for details): 

module new_vpwl(node i,j) action(double time0, double value0, ...); 

You need to use alternative syntax of determining of actual parameters (similar to function calls) and to 
define some terminator (e.g., time moment -1), which will mark the end of the list. The call of such a component 
would be: 

#define EOL -1.0 
new_vpwl vin; 
 
vin(n1, 0) action(0ns, 1v, 10ns, 2v, 100ns, 2v, 110ns, 2.5v, EOL); 

Keep in mind that compiler cannot check the type of parameters in the place of symbol '...'. That is, all 
parameters, except the first two, have to meet expected types (double in this case). See Chapter 5 for details on 
implementation of such action blocks. 

7.1.2.4. Sinusoidal signal generators 

Alecsis has built-in voltage and current source of sinusoidal signal vsin and csin. The parameters are 
amp (amplitude in V or A), freq (frequency in Hz), phase (initial phase shift in rad), and dc_offset (DC 
component in V or A): 

vsin vs; 
 
vs  (n2, 0) { amp=2V; freq=1kHz; phase=30rad; dc_offset=0.5V; } 

As any other voltage generator, vs in the example above generates link of type current. The current 
carries the same name, vs. 

7.1.3. Controlled sources 

Controlled sources are implemented as built-in elements, too. The controlling quantity at the input is either 
current or voltage, and the output quantity can be also either current or voltage. Therefore, there are four 
combinations: 

� vcvs - voltage-controlled voltage source (takes parameter gain) 

� ccvs - current-controlled voltage source (takes parameter mi) 



7. Analogue simulation in Alecsis 107 

� vccs - voltage-controlled current source (takes parameter gm) 

� cccs - current-controlled current source (takes parameter beta) 

vcvs vg1; 
ccvs vg2; 
vccs cg3; 
cccs cg4; 
 
vg1 (n1, 0, n3, n4) gain = 2; 
vg2 (n5, 0, vg1) mi = 1.2; 
cg3 (0, n2, n3, n4) gm = 1e-4; 
cg4 (0, n2, vg2) beta = 50; 

The first two actual links in all examples above are of type node. Voltage source vg1 has n1 as positive 
terminal, and vg2 has n5 as positive terminal. Currents of both current sources cg3 and cg4 assume direction 
from 0 to n2 as positive. 

Current-controlled sources vg2 and cg4 have one more actual link of type current, which is the 
controlling variable. Voltage-controlled sources have two actual links of type node for control. Both sources vg2 
and cg3 are controlled by the difference of voltages at nodes n3 and n4. 

The example shows that voltage sources of type vcvs and ccvs generate new currents. They are here used 
for control of generators of type ccvs or cccs. 

7.1.4. SPICE-compatible nonlinear components 

Circuit simulator SPICE has become a standard for circuit simulation. The biggest quality of this simulator 
are the models of nonlinear electronic components. For that reason, we have implemented the same models (as 
built-in models) in Alecsis. 

For these models, Alecsis accept unmodified SPICE model cards. The keyword spice is used for that. For 
instance, if file mosfet.mod, located in the working directory, contains models of MOS transistor given in 
SPICE syntax, it can be included in your description using: 

spice { 
# include "mosfet.mod" 
} 

7.1.4.1. Diode 

Declaration of semiconductor diode utilizes the key word diode. A diode has two nodes -- anode and 
cathode, given in that order, and a model card of class d. The list of model card parameters, together with their 
default values, is given in Appendix. 

diode d1, d2; 
 
d1 (n1, 0) model = _1n914; 
d2 (n2, n1) model = by238; 



108 Alecsis 2.3 - User’s manual 

7.1.4.2. MOS transistor 

Declaration of metal-oxide-semiconductor field effect transistor (MOSFET) utilizes the key word mosfet. 
MOS transistor has four terminal nodes -- drain, gate, source, and bulk, given in hat order, which is adopted from 
SPICE. It also accepts a model card of class nmos/pmos (the same model parameters, but for n and p type of 
transistor channel). 

Alecsis supports 4 types of MOS transistor models. There are three SPICE2 models (model parameter 
LEVEL is 1-3), and also a BSIM model (Berkeley short-channel IGFET model) for transistors with submicron 
dimensions. According to HSPICE classification, BSIM model cards have the LEVEL parameter set to 13. 

Regardless of the level, MOS transistors have geometric parameters for length (l), width of the channel (w), 
area (ad, as) and circumference of drain and source (pd, ps). Channel length and width must be given, while 
other parameter have default value of 0. 

mosfet m1, m2; 
 
m1(n1,n2,0,0) { model=nes2mos; l=2u; w=6u; ad=as=10p; pd=ps=40u; } 
m2(n3,n4,n2,0) { model=pes2mos; l=w=3u; }//other parameters are 0  

Note: MOS transistor models LEVEL 1, 2, and 3 have parasitic capacitances implemented as nonlinear 
capacitors, whose capacitances are calculated for given terminal voltages. This is so-called Meyer model, which 
exhibit charge nonconservation. Only BSIM (LEVEL=13) model has correct parasitic capacitance model, where 
charge conservation is guaranteed. In this model, terminal charges are calculated rather than capacitances, and 
parasitic currents are derivatives of these charges. Terminal charges can (optionally) appear as independent 
variables in the circuit system of equations (see section on options in Chapter 5). 

Any SPICE manual will offer additional information on the names of parameters in cards, their typical 
values, and the appropriate equations for different levels. We give the list of model parameters and their default 
values in the Appendix. 

7.1.4.3. Bipolar junction transistors 

For declaration of bipolar junction transistor, keyword bjt is used. There are four terminal nodes -- 
collector, base, emitter, and substrate, given in that order. The last node, substrate, can be omitted. It accepts 
standard SPICE model card of class npn/pnp. Beside the model card, there is an optional parameter, area (area 
of the transistor). 

bjt q1; 
 
q1 (c, b, e) model = bc1107a; 

The list of model card parameters, together with their default values, is given in Appendix. 

7.1.4.4. JFET 

For declaration of junction field effect transistor (JFET), keyword jfet is used. It has three terminal nodes 
-- drain, gate and source, given in that order. It accepts standard SPICE model card of njf/pjf type. Parameter 
area (area of the transistor) is optional. 



7. Analogue simulation in Alecsis 109 

njf j1; 
 
j1 (d, g, s) model = J2N2068; 

The list of model card parameters, together with their default values, is given in Appendix. 

7.1.5. Ideal switch 

Switch is implemented in Alecsis as ideal component, whose resistance is zero when the switch is closed (on 
state) and infinite when it is open (off state). In Alecsis, switch is a voltage-controlled component. Unlike other ideal 
switches this does not pose any limits in circuit topology. Even loops and cutsets of switches are allowed, providing 
that the switching is regular. It can be used in both linear and nonlinear circuits. Switch is itself modelled as 
nonlinear. 

Note: SPICE switch model has finite Ron and Roff resistances. Therefore, our switch model is not 
compatible with SPICE. You can easily define your own SPICE-like model of non-ideal switch, as a resistor whose 
resistance value is changed inside action block (see Section on combined structural-functional modelling on 
how to do that). 

Switch is declared using keyword switch. 

switch sw; 
 
sw (n1, 0, n2, 0) { hyst=1; val_on = 3.5v; val_off = 1.5v; } 

Switch has four terminal nodes. The first two are contact nodes, connected by the switch (n1 and 0 in the 
example above). The last two are controlling nodes - voltage between two nodes is the controlling voltage Vc. In the 
example above, switch is controlled by the voltage at node n2, as 0 represents the ground node. 

The switch has four parameters - val_on, val_off, hyst and paststate. The first two are the 
thresholds, which are compared to the controlling voltage Vc. In most of the applications, these two thresholds are 
equal, val_on = val_off. If Vc>val_on, the switch is closed. If Vc<val_off, the switch is open. 

If val_on = val_off, parameter hyst plays no role. In the example above, you can see that 
val_on can be different than val_off. When Vc is between these thresholds, the behaviour of the switch is 
determined by the parameter hyst. This parametercan take values 0 and 1. If hyst is 1, the switch has 
hysteresis. The switch state if Vc is between val_on and val_off depends on the switch history. It is allowed 
both that val_on > val_off, and 
val_on < val_off in that case. If hyst=1, and val_on > val_off, the controlling of the switch is the 
following: 

• when Vc is growing, when it passes the threshold val_on, the switch is turned on (closed); 

• when Vc is decreased, when it passes the threshold val_off, the switch is turned off (closed). 

If hyst=1, and val_on > val_off, the control is somewhat different: 

♦ when Vc is growing, when it passes the threshold (whatever comes first, val_on or val_off) the switch 
is turned on (closed); 

♦ when Vc is decreased, when it passes the threshold (whatever comes first, val_off or val_on), the 
switch is turned off (closed). 

If parameter hyst is 0 (which is the default value), the switch has no hysteresis. In this case, val_on 
must be equal or greater than val_off. Between val_on and val_off, the switch has continuous change of 
resistance. It should be noted that this is a continuous change between 0 (for val_on) and ∝ (for 
val_off). 



110 Alecsis 2.3 - User’s manual 

Note: Parameter hyst is optional, its default value is 0 (no hystersis). 

Swtich also has parameter paststate. This is also an optional parameter. This parameter is actually not 
used to pass information to the model. It is intended to be used in another direction -- it returns information about 
the switch state in the previous (last solved) iteration. 

In Alecsis, the switch is implemented as internally controlled, i.e. it is controlled by some circuit voltage. As 
that voltage can change from iteration to iteration, it is clear that the final state of the switch can be determined only 
when convergence occurs. In some cases, we want to know that switch state in the new iteration, and the parameter 
paststate can be used for that. For instance, if we model the diode D as the ideal switch, the model can be 
described as: 

⎩
⎨
⎧

<
>

0,
0,

:
pifopen
pifclosed

D ,               , (7.1) 
⎩
⎨
⎧

=
openisDifv

closedisDifi
p

where i is the current through the diode (switch), and v is voltage on the diode (switch). The diode can be controlled 
by voltage or current, depending on the diode state. To model it correctly using ideal switch, we have to know the 
previous state of the switch. 

module switch_diode (node a; node k) { 
   vgen vcaux; 
   switch sd; 
 
   vcaux (aux,0); 
   sd (a,k,aux,0) { val_on=val_off=0.5; } 
 
   action () { 
      process per_iteration { 
         if ( !sd->paststate ) {   /* switch was on (closed) */ 
            if((current) sd>0)  vcaux->value=1; 
            else                vcaux->value=0; 
         } else {                  /* switch was off (open) */ 
            if((node)a<(node)k) vcaux->value = 0; 
            else                vcaux->value = 1; 
         } 
      } 
   } 
} 

This is an example of combined structural-functional modelling that will be explained later in more details. 
The structural part of the model introduces the switch sd, and the ideal voltage source vcaux, which is used for 
switch control. (For diode model, we need switch controlled by the current. Switch is, however, implemented as 
voltage-controlled element, so we need some auxiliary voltage (node aux) that will reflect changes of current). In 
the structural part, generator vcaux is left without voltage value. This value is given in the functional part 
(action block), as an implementation of formula (7.1). Parameter paststate is used to return state of the 
switch in the previous iteration. 

Note: The current through the switch is introduced as a new quantity in the system of equations (as was the 
case with ideal voltage generators). In the above example, current sd was used in the action block. 

We have tried to diminish differences between built-in component models and user-defined models 
(modules). We have explained in Chapter 5, that the action parameters can be used bidirectionaly. As you can 
see from this example, this is also the case with parameters of built-in components. Indirection operator -> was 
used to access both the action parameters and the built-in component parameters. 

The switch model was implemented as built-in, as it has some influence to time-step control. In some classes 
of circuits, it was very important to simulate the switch just before the switch transition, and just after the switch 



7. Analogue simulation in Alecsis 111 

transition. It is important to simulate it just before the transition to obtain exact capacitor charges and inductor 
fluxes in the moment of transition, as these quantities are of importance for the circuit after the transition. After the 
transition, the time-step is reset, since the circuit has new topology. As the switches in Alecsis are internally 
controlled, the exact switching instant is not known in advance. An iterative process is implemented to find the 
switching instant with desired accuracy. See section on options in Chapter 5, where options SC_vtol, 
SL_itol and SDDT_tol are described. 

Note: We have already stated that ideal switch model can be used in any circuit topology, even when 
there are loops of switches and ideal voltage generators exist, or cutsets of switches and ideal current generators. 
The condition is that the switching is regular. If it is not the case, the solver cannot converge, which should be 
information for the user that there is problem with switching consistency (e.g. the part of the circuit is floating). 
However, you should be aware that options for difficult convergence, dump and dcon, can sometimes force 
convergence even in such cases. Therefore, they should be used with care. 

7.2. Structural modelling 

Many models can be described as connections of some other models, e.g. resistors, controlled sources, etc. If 
we have a module, that has only declarative and structural part, and no functional part (no action block), we 
consider that as a structural modelling. Both built-in components and user-defined modules can appear as parts of 
such model. 

module real_voltage_source (node 1, 2) { 
   resistor r1; 
   vgen vg; 
 
   vg(1,3) 5; 
   r1(3,2) 1k; 
} 

Node 3 is implicitly declared in this example. 

Purely structural model is actually describing subcircuit, defining circuit hierarchy in that way. 

7.3. Combined structural-functional modelling 

In fully functional modelling, the user can write model equations freely in the action block. However, 
this lack of restrictions can cause errors in the modelling process. Combined structural-functional modelling should 
be the preferred way of modelling, as it is more restrictive, and therefore not so error-prone. 

In the combined approach, the user gives the structural description of the model (like in the structural 
modelling) but omit some or all of the parameters. These parameters are calculated and assigned to the components 
later, in the functional part (action block). Such modelling technique is often used in electronics. An example is 
modelling of a nonlinear component, for instance diode, by linearizing it. Linearized diode model consists of a 
resistor and ideal current source (Figure 7.1.). Parameters of these components Rd

m and ids
m are recalculated in every 

iteration m using expressions (7.2) and (7.3) 



112 Alecsis 2.3 - User’s manual 

 

Figure 7.2. Diode and its linearized model. 

m
dd vvd

d

m
d

v
i

R

=∂
∂

=
1

 (7.2) 

m
d

m
dm

d
m
ds

R
v

ii −=  (7.3) 

Therefore, combined structural functional model of diode would consists of a resistor and ideal voltage 
source connected in parallel, and an action block, where parameters of these components are calculated in every 
iteration. 

There is another reason to use combined approach instead of purely functional modelling whenever possible: 
Alecsis can check circuit irregularities, such as loops of ideal voltage sources and inductors, or cutsets of ideal 
current sources and capacitor, and inform the user about them. Such checking is possible when we use combined 
modelling, since notion of these electronic components is still there. However, if we use equations, Alecsis cannot 
recognize components in them. 

In combined modelling, you need to reference elements inside a process to access them. The name of an 
element in expressions is a pointer to the structure of element parameters. Some elements (resistor, capacitor, etc.) 
have only one element in the structure -- value, while the others have more (named) parameters. For instance, 
parameter value of resistor r1 is accessed as r1->value. All built-in element parameters are of double 
type, and the parameters of user defined components (submodules) are given in their declaration. 

The problem can arise with component that return current (or some other link), like voltage sources and 
inductors are, since the names of element represent the current at the same time. Confusion is avoided as we can get 
the current (or other link) using cast operation (for source v1 the current is (current)v1). Without cast, the 
name represents the pointer to parameters. 

7.3.1. Time-dependent linear models 

We have already said that Alecsis has only ideal voltage and current source, and a pair of ideal signal 
generators as built-in components. Using combined modelling approach with ideal source as a basis, any signal 
generator can be easily described. To describe their behaviour, you often need only one process, and one line. For 
modelling of linear generators process with per_moment synchronization is used. The process is 
executed once in the given time instant. 

#define twopi 6.282 
module singen (node i, j) { 



7. Analogue simulation in Alecsis 113 

   vgen gen; 
   gen (i, j); 
   action per_moment (double amp=1.0v, double freq=1kHz,  
                      double phase=0.0rad, double offset = 0v) { 
       gen->value= offset + amp * sin( twopi*freq*now + phase ); 
   } 
} 
 
root test () { 
   singen g1, g2; 
 
   g1 (node1,node2) { amp=0.2V; freq=50Hz; phase=0; offset=0.5V; } 
   g2 (node3,node4) action (0.2V, 50Hz, 0, 0.5V); // another way 
 
   ... 
} 

This example shows the simplicity of modelling of sinusoidal generator with adjustable amplitude, offset, 
frequency, and phase (all these parameters have default values, as well). As there is only one process , the 
keyword process is not used, since the compiler takes the body of action with per_moment 
synchronization 

Name of voltage source gen is used as pointer to structure containing parameters. There is only one 
parameter in the structure. That parameter can be reached using operator of indirection (->), i.e. as gen-
>value. In such case, when there is only one parameter in the structure, one can use indirection by dereferencing 
(operator *), too: 

*gen = offset + amp * sin ( twopi * freq * now + phase ); 

Built-in elements have their signals for synchronization. This is why linear and time-independent elements 
behave as if they have processes sensitive to signal initial, in other words the contributions to the system of 
equations are calculated only once. If we change values of parameters of such an element in the process 
per_moment, like we do with the voltage source gen in the example above, we change their 
synchronization to per_moment. In the same way, we can change synchronization of linear time-independent 
and linear time-dependent models to per_iteration, if we change values of their parameters in a process 
per_iteration. Nonlinear elements (transistors, diodes, etc.) cannot change their synchronization , as they 
already have the most frequent refreshing, per_iteration. 

Note: You may have noticed operator now inside the function sin. It simply returns the current time 
moment of the simulation, which amounts to 0 for structural, post_structural and initial 
processes. You can call it from any C/C++ -like function, but if the function has not been called during the 
simulation the value of the operator will be 0. 

Note: In the structural description, parameter values need not to be omitted. If parameter value is 
assigned in functional description (action block), the value given in structural part is overwritten. The value 
assigned in the structural part is valid before the first execution of appropriate functional description. If no value is 
assigned, 0 is assumed until the first execution of functional description. It is useful to assign nonzero values in the 
case when zero values lead to singular matrix, which would abort the program in the phase of matrix renumeration 
(only processes with synchronization structural are executed before the renumeration). 

7.3.2. Nonlinear models 

All built-in nonlinear components are modelled in Alecsis using Newton-Raphson method of linearization. 
We can use Newton-Raphson method to linearize nonlinear models before composing equations, rather than to 



114 Alecsis 2.3 - User’s manual 

linearize nonlinear equations. You need to create a linearized scheme representing nonlinear component, where 
linear components in that scheme change values of parameters in every iteration. Iterations are repeated until 
convergence is reached. 

We have already described such method in this section, using diode model as an example (Fig. 7.2.). The 
parameter values of linear components are obtained by differentiating nonlinear functions. Therefore, model of any 
nonlinear component can be described by declaring and connecting components of the linearized circuit, followed 
by calculations of differentials in every iteration. Differentiation has to be performed with respect to all controlling 
quantities, i.e. quantities that appear in the original nonlinear expressions. Often, all terminal quantities of that 
nonlinear component are the controlling quantities. 

We shall give here example of a MOS transistor. This is the simplest version of MOS transistor model, 
SPICE level 1 (Shichman-Hodges) model, without parasitic capacitances. Model is given as dependence of drain 
current ID on all terminal voltages. This nonlinear model has to be linearized with respect to all controlling 
quantities. If we consider source S as referent voltage, there are three controlling voltages - VGS, VDS, VBS. Linearized 
model is given as a parallel connection of three voltage-controlled current sources, and one independent current 
source (Figure 7.3.). Their parameters are recalculated in every iteration m using expressions (7.4.-7.7.). 

 

Figure 7.3. MOS transistor and its linearized model. 

m
BSBS

m
DSDS

m
GSGS VVVVVVGS

Dm
m V

Ig
===∂

∂
=

,,
 (7.4) 

m
BSBS

m
DSDS

m
GSGS VVVVVVDS

Dm
ds V

I
g

===∂
∂

=
,,

 (7.5) 

m
BSBS

m
DSDS

m
GSGS VVVVVVBS

Dm
mbs V

I
g

===∂
∂

=
,,

 (7.6) 

m
BS

m
mbs

m
DS

m
ds

m
GS

m
m

m
D

m
S VgVgVgII −−−=  (7.7) 

MOS model has a number of technological parameters. Those parameters should be grouped in model card. 
A class containing these parameters is defined firstly. Model code is then described using functions that are methods 
of model class. These functions have access to parameters. Processes become shorter when bulk of the calculations 
is performed in methods. 

The following example gives a functional description of MOS transistor: 

#define Ntype 1.0 
#define Ptype -1.0 



7. Analogue simulation in Alecsis 115 

 
class simple_mos {       // new class of model cards 
        double type, gamma, phi; 
        double uo, vto, lambda; 
    public: 
        simple_mos (); 
        >simple_mos (); 
        ~simple_mos (); 
        friend module smos; 
}; 
 
simple_mos::simple_mos () { // constructor sets the initial values 
    type = 0.0 ;    gamma = 0.7 ;    phi    = 0.5 ; 
    uo   = 0.06;    vto   = 1.0 ;    lambda = 0.0 ; 
} 
 
#define  max(x,y) ((x)>(y)?(x):(y)) 
 
module simple_mos::smos (drain, gate, source, bulk) { 
    vccs e_gm, e_gmbs, e_gds; 
    cgen e_iaux; 
 
    /* linear voltage-controlled sources */ 
    e_gm   (drain, source, gate,  source) gm=0.0; 
    e_gds  (drain, source, drain, source) gm=0.0; 
    e_gmbs (drain, source, bulk,  source) gm=0.0;  
 
    /* ideal current source */ 
    e_iaux (drain, source); 
 
    action per_iteration ( double w, double l ) { 
        double vto_mod, vd, vg, vs, vb, vds, vbs, vgs; 
        double sarg,von,vgst,arg,beta,betap; 
        double gm, gds, gmbs, ids; 
 
        vd = drain;   vg = gate;   vs = source;   vb = bulk; 
 
        vds = type * (vd - vs);         vbs = type * (vb - vs); 
        vgs = type * (vg - vs);         vto_mod = type * vto; 
 
        beta  =w/l*uo; 
        if (vbs<=0.0)  sarg=sqrt(phi-vbs); 
        else { 
            sarg=sqrt(phi);   sarg -= vbs/(sarg+sarg); 
            sarg=max(0.0,sarg); 
        } 
        von=vto_mod+gamma*(sarg -sqrt(phi));    vgst=vgs-von; 
        if (sarg<=0.0) arg=0.0; 
        else arg=gamma/(sarg+sarg); 
        if (vgst<=0.0) { 
            /*     cutoff region     */ 
            ids = gm = gds = gmbs = 0.0; 
        } 
        else { 
            betap=beta*(1.0+lambda*vds); 
            if (vgst<=vds) { 
                /*    saturation region    */ 
                double vgst2; 



116 Alecsis 2.3 - User’s manual 

 
                vgst2= 0.5*vgst*vgst;    ids  = betap*vgst2; 
                gm   = betap*vgst;       gds  = lambda*vgst2; 
                gmbs = gm*arg; 
            } 
            else { 
                /*    linear region    */ 
                double betap_vds,vdsh, arga;  
 
                betap_vds=betap*vds; 
                vdsh = 0.5*vds; 
                arga = vds *(vgst-vdsh); 
                ids  = (gm=betap_vds)*(vgst-vdsh); 
                gds  = betap*(vgst-vds)+lambda*beta*arga; 
                gmbs = gm*arg; 
            } 
        } 
        /*    update element values    */ 
        e_gm->gm = gm;   e_gds->gm = gds;   e_gmbs->gm = gmbs; 
        *e_iaux = type *(ids - gm*vgs - gds*vds - vbs*gmbs); 
    } 
} 
 
model simple_mos :: simnmos { type=Ntype; 
    vto = 0.82; gamma=0.59; phi=0.686; uo=0.051; lambda=0.051;  
}  
 
model simple_mos :: simpmos { type=Ptype; 
     vto = -0.84; gamma=0.933; phi=0.733; uo=0.021; lambda=0.05; } 
 
root module test () { 
    smos m1, m2; 
 
    m1 (n_out, n_in, 0, 0) { W=5u; l=3u; model=simnmos; } 
    m2 (n_out, n_in, n_Vdd, n_Vdd) { W=5u; l=3u; model=simpmos; } 
    ... 
} 

Note: In the structural description, parameter values need not to be omitted. If parameter value is 
assigned in functional description (action block), the value given in structural part is overwritten. This is the 
case with values for gm given in the structural part to sources e_gm, e_gds and e_gmbs in the example above. 
The value assigned in the structural part is valid before the first execution of appropriate functional description. If 
no value is assigned, 0 is assumed until the first execution of functional description. It is useful to assign nonzero 
values in the case when zero values lead to singular matrix, which would abort the program in the phase of matrix 
renumeration (only processes with synchronization structural are executed before the renumeration). 

7.3.3. General nonlinear sources (automated linearization) 

The linearization performed on MOS transistor model in the previous example means that we use Newton-
Raphson method. The drawback is that the user is responsible to define both the structure of the linearized circuit, 
and to define partial derivatives with respect to all controlling variables. 

To make description of nonlinear models less error-prone and more user-friendly, we have developed special 
nonlinear controlled generators, where the process of linearization is performed automatically. These are: 



7. Analogue simulation in Alecsis 117 

♦ nlcgen - general nonlinear current generator; 

♦ nlvgen - general nonlinear current generator; 

♦ nlgen - general nonlinear equation. 

In these nonlinear controlled generators, the user supplies only the nonlinear dependence, and Alecsis 
estimates partial derivatives, replacing them with appropriate finite differences. Alecsis is able to calculate these 
finite differences automatically. That means that the secant method is used for solving nonlinear problems in that 
case. Newton-Raphson method has quadratic convergence (error in the next iteration is equal to the square root of 
the error in the previous iteration). Secant method has lower order of convergence -- 1.62, instead of 2. Therefore, 
order of convergence is decreased. 

Note: If we have a nonlinear circuit, usually only some of the models are described using nonlinear 
generators nlcgen, nlvgen, and nlgen. Other, for instance, built-in models use Newton-Raphson 
linearization. Therefore, the actual decrease of the convergence rate is low, and depends on the problem.  

Since Alecsis estimates partial derivatives numerically, the nonlinear dependence can be even non-
differentiable (it is, however, understandable that non-differentiable functions with very strong nonlinearities 
would lead to convergence problems). 

In all three types of nonlinear generators, there can be any number of controlling links (the only 
constraint is that there should be at lest one controlling link). Besides, type of controlling links is not 
constrained, too -- they can be of any analogue type (node, current, charge, and flow). 

We shall now describe syntax of each type of nonlinear generators in more details. 

7.3.3.1. Nonlinear current generator -- nlcgen 

Nonlinear current generator has two nodes for connection, denoting where the generator current is flowing, 
and at least one controlling link (of any analogue type). The connection nodes are given first. The order of 
connection nodes is important, since it gives direction for current, as in any other current generator. The order of 
controlling links is arbitrary. If the connection nodes are also controlling (i.e. if the value of the current depends on 
connection nodes), they has to be stated again as controlling nodes). 

In the structural part of the model, nonlinear generator is given without any parameters - only its connection 
is defined. The nonlinear dependance of the current is given in the functional description, i.e. in the action 
block. A process synchronized per_iteration has to be used, as dependence is nonlinear. 

The example of MOS transistor model using nlcgen. 

module simple_mos::smos (drain, gate, source, bulk) { 
    nlcgen mos_current; 
 
    mos_current (drain, source, drain, gate, source, bulk); 
    /* current flows between drain and source, and is controlled 
       by node voltages drain, gate, source and bulk */ 
 
    action per_iteration ( double w, double l ) { 
        ... 
        ... // calculates ids without derivatives - skipped here 
        nlcgen mos_current = type * ids; 
    } 
} 



118 Alecsis 2.3 - User’s manual 

The current flows between nodes drain and source, and the voltages of all for connections control it. 
As drain and source are controlling voltages, too, they are repeated in the set of controlling links. In the 
structural part of the module, no parameter is assigned to the nonlinear generator. The current value is calculated 
in the process synhronized per_iteration. In the same process, value is assigned to the generator using its 
name. In our example this was: 

nlcgen mos_current = type*ids;  

In simpler cases, the whole calculation can be performed on this assignment, so that the process contains 
only one line of the code. 

Note: Assignment operand (=) must not be understood literally here. The current is not actually assigned a 
value, partial derivatives are calculated and the contributions are added to the system of equations (so-called model 
stamp). 

There can be any number of nonlinear generators declared inside one module. However, in the action 
block of the module, each nonlinear generator value is calculated inside separate process. In every iteration, 
Alecsis executes that process code more than once, to estimate partial derivatives. Therefore, each nonlinear 
generator needs its own process, and all calculations regarding this generator should be in that process. 
Therefore, there has to be one, and only one process per nonlinear generator: 

module two_generators (node n1, n2, n3; current c3; flow f4) { 
    nlcgen gen1, gen2; 
 
    gen1(n1, n2, c3, f4); 
    gen2(n1, n3, n2, c3, n4); 
 
    action () { 
        process per_iteration { 
           nlcgen gen1 = c3*f4; 
        } 
        process per_iteration { 
           nlcgen gen2 = 5.*n2 - 6.*c3*n4; 
        } 
    } 
} 

Keyword nlcgen and component name (gen1 or gen2) give information to Alecsis which process to 
connect with particular nonlinear generator. 

Some special cases of controlled sources behave as basic components. So, nlcgen controlled by its own 
voltage behaves as a resistor: 

module new_resistor (node n1, n2) { 
    nlcgen r1; 
 
    r1(n1, n2, n1, n2); 
 
    action (double value) { 
        process initial { 
           if (value == 0.) warning ("zero resistance", 0);: 
        } 
        process per_iteration { 
           nlcgen r1 = (n1-n2)/value; 
        } 
         
    } 
} 



7. Analogue simulation in Alecsis 119 

You can also model easily current-controlled and voltage-controlled current source (cccs and vccs). 
However, in all these examples, synchronization per_iteration is used for otherwise linear and constant 
models, which makes such description inefficient. 

Nonlinear generator frees the user from determining structure of the linearized model and from calculating 
partial derivatives. Nevertheless, you can use nonlinear generators in a different way, with user-defined partial 
derivatives. In this way, only the structure of the linearized model is determined automatically. The user has to 
define partial derivatives, and the Newton-Rahpson method is used, with quadratic convergence. The following 
example demonstrates modelling of a diode: 

module new_diode (node an, ch) { 
    nlcgen Id; 
    Id (an, ch, an, ch); 
    /* current flows from an to ch, controlled by 
       node voltages an and ch */ 
 
    action (double is=1e-14) { 
        process per_iteration { 
            double vt = 25.8mV; 
            double gd, id; 
 
            id = is*(exp((ah-ch)/vt) - 1); 
            gd = (id + is)/vt; 
            nlcgen Id = id { @an = gd; @ch = -gd; } 
        } 
    } 
} 

With this description, simulator knows that source Id has the value id, and partial derivatives with respect 
to controlling links an and ch in every iteration. Operator @ is used with controlling link name to denote partial 
derivatives of a nonlinear function with respect to a particular link. If you omit the block containing partial 
derivatives, the secant method is used: 

... 
nlcgen Id = id; 

When partial derivatives are explicitely stated, the restriction about the number of nonlinear defined sources 
in a single process does not apply (the process is now executed only once in every iteration). 

 If at least one partial derivative is explicitly given, Alecsis does not 
estimate numerically other partial derivatives (which are not given). 
Therefore, they are undefined, which can cause simulation errors. 
Therefore, nonlinear generators have to be used with all partial 
derivatives (partial derivatives with respect to all controlling links) 
omitted, or with all derivatives explicitly calculated. 

 Alecsis does not give any warning about possible errors when only some 
of the partial derivatives are calculated. We will improve this in next 
versions. 

 



120 Alecsis 2.3 - User’s manual 

7.3.3.2. Nonlinear voltage generator -- nlvgen 

Nonlinear voltage generator has two nodes for connection, and at least one controlling link (of any analogue 
type). The order of connection nodes is important, since it gives orientation of the generator (positive node first). 
All other rules and restrictions are the same as for nonlinear current generator (nlcgen). 

root module an_example_for_nlvgen () { 
   nlvgen nonlinear_vgen; 
   vgen v1, v2; 
   resistor r; 
 
   v1(n1, 0) 2; 
   v2(n2, 0) 3; 
 
   nonlinear_vgen(a,0, n1, n2); 
   r(a,0) 1.k; 
 
   timing { a_step = 1.; tstop = 100.; } 
   // current through nlvgen is available under its name 
   plot { node a;  current nonlinear_vgen; } 
 
   action { 
      process per_iteration { 
         nlvgen nonlinear_vgen = n2*n3; 
      } 
   } 
} 

This is a very simple example with nlvgen, which here multiplies two voltages (2 and 3 volts), giving 
result of 6. As for any other voltage source, current through nlvgen is introduced as new analogue link in 
the system of equations. Here, current nonlinear_vgen is plotted out, and its value is 6mA. 

Nonlinear voltage generator can be also used with user-defined partial derivatives, using the same syntax as 
for nlcgen. 

7.3.3.3. Nonlinear equation -- nlgen 

Nonlinear equation (nlgen) has somewhat different usage than nlcgen and nlvgen, although it 
follows the same syntax rules. It has no connection nodes, but has an arbitrary number of control links. It creates a 
new analogue link of type flow, which carries the same name as the generator. All contributions to the system 
matrix are in the same row, which corresponds to this new flow. For that reason, we can say that nlgen creates 
new (linearized) equation in the system matrix. 

# include <math.h>   // includes declaration for sqrt function 
 
module nlgen_test (flow f1, f2) { 
   nlgen gen; 
 
   gen(f1, f2); // f1 and f2 are controlling flows 
 
   action per_iteration { 
      nlgen gen = sqrt(n1*n2);   // new equation 
   } 
} 



7. Analogue simulation in Alecsis 121 

In this example, equation gen=(n1*n2)1/2 is created, and is added (in linearized form) to the system of 
equations. Obviously, unlike nlvgen and nlcgen, generator nlgen does not correspond to any electrical 
element. As it creates new quantity of type flow (in our case, flow gen), it is to be used for modelling of 
nonelectrical problems. 

Other rules and restrictions are the same as for nlcgen and nlvgen. Generator nlgen can be used with 
defined partial derivatives, too. 

Note: As automatic linerization is very convenient for users, we would create other forms of automated 
linearization in the following versions of Alecsis. This wouls be automated linearization in purely functional 
modelling (command eqn). 

7.3.4. Virtual synchronization of processes 

It is already explained that combined structural-functional modelling is based on connecting some built-in, or 
previously modelled components, and than changing their parameters in the functional part of the description 
(action block). 

All built-in components have their internal synchronization -- resistors are filled into the system matrix as 
processes initial, capacitors as processes synchronized per_moment, etc. When such built-in components 
are used in the structural part of model, their synchronization can be changed in the functional part. For instance, if 
linear and time-independent built-in component is used as part of the linearized model, their parameters are updated 
in every iteration when they are referenced in process per_iteration. Naturally, re-synchronization is 
possible only from less frequent to more frequent synchronization level (e.g. if nonlienar components are referenced 
in process initial, they would be still updated in every iteration). 

On the other hand, user defined models have processes with fixed syncronization. For instance, we can have 
model described using fully functional modelling (explained later in this Chapter) with process initial: 

module constant_component (node n1, node n2) { 
   ... 
   action (double value) { 
      process initial { 
         ... 
      } 
   } 
} 

When describing some other model using combined approach, we can use a component of type 
contant_component as submodel. However, the problem can arise, since synhronization is here fixed, and 
no re-synchronization is possible. We want user-defined models to behave in the same manner as built-in 
components, and to be used equally. To enable that, we can add word virtual before the word process: 

module constant_component (node n1, node n2) { 
   ... 
   action (double value) { 
      virtual process initial { 
         ... 
      } 
   } 
} 

Such process will behave as ordinary process initial, if you set the component parameter 
value when connecting the component, and do not change it afterwards. However, if the parameter value is 



122 Alecsis 2.3 - User’s manual 

changed in a higher-order process (per_moment, per_iteration), the virtual process will be 
re-synchronized to that more frequent synchronization level. 

If parent component is digital (processes are sensitive to changes on signals), such child virtual 
process initial would be re-synchronized to per_moment. The parameter value would be then 
updated when the parent process activates (when there is change on signal the parent process is sensitive 
to). However, the child process would be executed in every time-instant (per_moment synchronization), in 
order to fill the analogue system matrix.  

Processes sensitive to signals cannot have virtual synchronization. 

7.4. Functional modelling -- eqn statement 

In fully functional modelling, user can freely write the equations that contribute to the system of equations. 
Therefore, there are no restrictions in what is to be described as a model. 

Note: Lack of restrictions makes functional approach very powerful, but also error-prone. Alecsis, for 
instance, check if there are any loops of ideal voltage generators and inductors, or cutsets of ideal current sources 
and capacitors, etc. However, in fully functional modelling, there is no information about the model structure, so 
such checking is not possible. Therefore, one can make an error in eqn statement and create singular system of 
equations.  

Equations are written using command eqn. They are written in the processes of the action block. 
Therefore, structural part of the model can be completely omitted. There are three basic forms of this command: 

� simple eqn statement; 

� through eqn statement; 

� across eqn statement. 

Simple eqn statement defines a single equation. All contributions to the matrix are in the same row. 

Through eqn statement defines the current flowing through the branch between two specified nodes. It has 
contributions in two rows, corresponding to these two nodes, and can be replaced by two simple eqn statements.  

Across eqn statement defines the voltage across the branch, between two specified nodes. It has 
contributions in three rows, corresponding to these two nodes and to the current flowing between them. Therefore, 
an across eqn statement can be replaced by three simple eqn statements. 

Electrical current is therefore a through quantity, while the voltage is an across quantity. Such approach can 
be used in other physical problems, since we can define through and across quantities in them. Few examples are 
given in Table 7.1. 



7. Analogue simulation in Alecsis 123 

Table 7.1. Across and through quantities in different physical domains. 

generalized 
quantities 

electrical mechanical - 
translational 

mechanical - rotational hydraulic etc. 

across quantity voltage V velocity v angular velocity ω pressure p ... 

through quantity current I force F torque τ flow Q ... 

power P=V I P=v F P=ω τ P=p Q ... 

For across quantity, an equation equivalent to Kirchhoff Voltage Law is satisfied, while through quentities 
must satisfy an equivalent of Kirchhoff Current Law. If the designer of electrical or nonelectrical models uses such 
paradigm of modelling, consistent system of equations will be built by Alecsis. Through and across εθν statements 
are more restrictive than simple eqn statement, but they lead to better models. 

Note: Using eqn statements, linear differential equations can be described. Nonlinear equations cannot be 
described directly. Linearization of the model, according to Newton-Raphson method, has to be performed by the 
user. Such linearization and eqn statement have to be in process synchronized per_iteration. In the 
following versions of Alecsis, we plan to introduce nonlinear eqn statement, that uses the mechanisms developed 
for nonlinear generators (nlgen). 

7.4.1. Simple eqn statement 

An example of simple eqn statement is the following: 

eqn i: g*{i}-(2*v-8.)*{j}-4*{k}+5.-g*j=67.; 

In this equation, contributions to the system matrix are defined. They are all in the row specified directly 
after keyword eqn, i.e. in the i-th row. The column where the contribution appears is given by the index in 
parentheses '{', '}', which multiplies the contribution. Expression g*{i} means that there is contribution g in the 
i-th column. So we have contribution 
(-2*v+8.) in the column j, and -4 in the column k. All indices representing row and column, must be declared 
as analogue links (node, current, charge, or flow), so that a row and a column in a matrix corresponds to 
each of them. 

Contributions that do not multiply any index in parentheses, are contributions to the right-hand side of the 
system of equations. So, in our example we have contribution to the right hand side of the row i, which is (67-
5+g*j). Note that j is here given without parentheses, which means that this is not a position in the matrix, but 
the number of type double, which represent the current value (last solution) of the analogue link j. 

Note: The contributions to the columns must be before the symbol '=', while the contributions to the right-
hand side vector can appear both before and after the symbol '='. 

If the above equation is the only one that contributes to the row i, then the equation appear as such in the 
system of equations. Nevertheless, other eqn statement in the same or some other module, or any other built-in or 
user-defined model, can contribute to the same row. All these contributions are added to the row i, following the 
concept of "stamps" common in electronic simulation. 

We can form a stamp for any model using eqn statement. Here is an example of resistor: 

module new_resistor (node i, j) { 



124 Alecsis 2.3 - User’s manual 

    action (double value=0.0) { 
        process structural {  
            if (!value) warning("zero valued resistor", 1); 
        }    
        virtual process initial { 
            double g = 1/value; 
 
            eqn i:  g*{i}-g*{j}=0; 
            eqn j: -g*{i}+g*{j}=0; 
        } 
    } 
} 

The first eqn statement contributes to the row i, and defines the current flowing through the resistor branch 
from node i to node j. The same applies to the second eqn statement, but this defines current flowing from j to 
i. 

Expression g*{i}-g*{j} is the current that is flowing out of node i. If eqn i would be the only 
one that contributes to matrix row i, we would have that this current is 0, which is senseless. But other components 
connected to the node i contribute to that eqn, and the complete equation is stating that the sum of all currents 
flowing out of node i is zero (Kirchhoff Current Law). For such case, when we are modelling currents or 
voltages, it is much more readable, and less error-prone, to use through eqn statement or across eqn 
statement, described in the following sections. Simple eqn statement should be used only when we are not 
using Kirchhoff Laws or its equivalents described in Table 7.1., and that should be avoided if possible. 

Equation 

eqn i: g*{i}-g{j}=0; 

can be also written as: 

eqn i: g*{i,j}=0; 

which makes equations shorter. 

If i and j are links of type node, this can be also written as: 

eqn i: g*{i,j}.v=0; 

Extension '.v' denotes voltage. In this case, Alec++ would check the type of i and j, and would exit and give an 
error message if they are not of type node. It can be also written as: 

eqn i: g*{i}.v-g{j}.v=0; 

If i and j are declared as links of type flow (rather than node), you can use extension .a. So, the 
appropriate equation would be: 

eqn i: g*{i,j}.a=0; 

or: 

eqn i: g*{i}.a-g{j}.a=0; 

Extension '.a' denotes nonelectrical variable of across type. Alecsis checks if i and j are declared as links of type 
flow.  



7. Analogue simulation in Alecsis 125 

Note: Alecsis differs between electrical across quantity -- voltage (node) and electrical through quantity -- 
current; but with nonelectrical quantities, there is no such differentiation (in this version of Alecsis). All of 
them are of type flow, which can be used both as an across and as a through quantity. 

As you can conclude from examples above, extensions '.v' and '.a' are optional, but are recommended, as 
they reinforce type checking. If extensions are not used, Alecsis checks only if both links in the pair {m,n} are 
links of the same type. 

Note: Analogue links in eqn statement -- for instance, nodes i and j in statement: 
eqn i: g*{i,j}.v=0; 

must be scalars, as they are representing rows and columns in the system of equations. This applies for through and 
across eqn statement, too. 

 Analogue links in eqn statement can be scalars that are member of 
composite signals. Therefore, it is legal to define: 

  eqn w[2]: 5*w[2]-6*w[5]=32; 
 where w[2] and w[5] are scalar analogue links, members of link array 

w[]. However, it is not legal to write: 
  eqn w[m]: 5*w[m]-6*w[n]=32; 
 since link array indices must be constant.  
 This problem can be avoided with one additional hierarchical level in 

description. For instance, if you want to define: 
  process structural { 
  for (m=1; m<=k; m++) 
   for(n=1; n<=k; n++) 
   eqn w[m]: 5*w[m]-6*w[n]=32; 
  } 
 you have to define an additional module for equation: 
  module Equation (node w1, w2) { 
  action initial () { 
   eqn w[m]: 5*w[m]-6*w[n]=32; 
  } 
  } 
 and clone it in a loop, using clone command explained later in this 

Chapter: 
  module Equation Eqn; 
  ... 
  process structural { 
  for (m=1; m<=k; m++) 
   for(n=1; n<=k; n++) 
   clone Eqn(w[m],w[n]); 
  } 
 This applies on through and across eqn statement, too. 
 

7.4.2. Numerical integration in eqn statement (ddt, d2dt2, idt) 

Up to now, we have explained how to describe linear algebraic equations, that directly contribute to the 
system of equations. However, many physical problems need differential equations to be modelled. Simple eqn, 



126 Alecsis 2.3 - User’s manual 

across apacitor 
modell

 eqn, and through eqn statements can be all modelled as differential equations. For example, c
ed using equation: 

dt
dvCi =  (7.8) 

where i is the current through the capacitor, and v is the voltage accross its nodes, can be described as: 

module new_capacitor (node i, j) { 
    action (double value) { 
        process per_moment { 

t. This will be 
explain

ddt stands for time derivative. It performs numerical integration (discretization). The numerical 
integra  method is chosen in the options block, which is explained in Chapter 5. The way of filling the matrix 
depends on t

ributions to the matrix is not constant - it depends on the time step, and on 
the syst  (sol

}.v = 0; 

ified, so that the current through the capacitor appears as 
 of equations. The stamp is 'expanded' for one row and one column, and these carry the name 

e as the name of the component: 

j) { // returns current on name 

{new_icap} = 0; 

new_icap, the 
second equation is stating that , and the 
third one is describing current/voltage dependence given by eqn. (7.8). 

Capacitor model given by eqn. (7.8) can be rewritten as: 

            eqn i:  value * ddt{i} - value * ddt{j} = 0; 
            eqn j: -value * ddt{i} + value * ddt{j} = 0; 
        } 
    } 
} 

Equation (7.1) is a typical through equation, so it is better to use through eqn statemen
ed in the next section. 

Operator 
tion

he method, but this is hidden from the user when operator ddt is used. 

When operator ddt is used, cont
em history utions in the previous time instants). For that reason, in the above example, eqn command is 

used in the process synchronized per_moment. 

Shorter written is allowed here, too: 

eqn i:  value * ddt{i,j} = 0; 

as well as extension '.v' or '.a': 

eqn i:  value * ddt{i,j

The previous example of a capacitor can be mod
unknown in the system
of the current, which is here the sam

module current new_icap (node i, 
   action (double value) { 
     process per_moment { 
       eqn i:                          {new_icap} = 0; 
       eqn j:                         -
       eqn new_icap: value*ddt{i,j}.v -{new_icap} = 0; 
      } 
   } 
} 

The first equation is stating that the current flowing outside of node i is 
the current flowing outside of node j is -new_icap



7. Analogue simulation in Alecsis 127 

∫= idt
C

v 1  (7.9) 

That can be described using operator , which stands for integration with respect to time: 

module newer_icap (node i, j) { 
   actio
      pr
         eqn i:                             {newer_icap}=0; 

idt

n (double value) {  
ocess per_moment { 

         eqn j:                            -{newer_icap}=0;  
         eqn new_icap: {i,j}.v -1./value*idt{newer_icap}=0; 
      } 
   } 
} 

 Operator idt is still not fully tested. Operator ddt is normally used for 
all SPICE-like modelling and simulation problems. 

  

For appli n modelling of electronic components, operator ddt (time derivative) is enough, as there 
are only first or ive is 
often necessary
Nevertheless, for the f equations, we have introduced 
second-order time derivative d2dt2: 

t are connected to time-step control. Time-step control parameters are 
given i

etic nd 

cation i
der differential equations. However, for modelling of mechanical systems, second time derivat
. One could avoid usage of second-order time derivative by introducing additional equation. 

sake of model readability and to reduce size of the system o 

process per_moment { 
   eqn x:  m*d2dt2{x} + ro*ddt{x} + c*{x} - {F} = 0; 
} 

In this example of mechanical equilibrium m denotes the mass, ro is the friction resistance, and c is the spring 
constant. 

Operators ddt, d2dt2, and id
n Section 5.6.3.1. in Chapter 5. 

Operators ddt, d2dt2, and idt cannot appear in arithm  expressions outside of comma eqn.  

7.4.3. Through eqn statement 

If we want to describe behaviour of a quantity that has through character (Table 7.1.), the simplest way to is 
to use through eqn statement. For example, resistor model from section 7.4.1. can be described as: 

) { 
{ 

        process structural {  

 module new_resistor (node i, j
    action (double value=0.0) 

            if (!value) warning("zero valued resistor", 1); 
        }    
        virtual process initial { 
            double g = 1/value; 



128 Alecsis 2.3 - User’s manual 

 
            eqn {i,j}.i = g*{i,j}.v; 

tension '.i' on the left-hand side of the equation denotes the current. The equation above means that the 
current the voltage between node i and node j. 
Expres einforces type checking, as i and j must be links of type node (current can flow only 
betwee

The through eqn statement above is fully equivalent to two simple eqn statements used for resistor model 
in sect

and to: 

which  the equation can be omitted. (They cannot be omitted on the 
left-hand side of through equation.) The above equation can be also given with two through eqn statements. 

eqn {i}.i = g*{i,j}.v; 

Many electrical models can be naturally described by through equation. For instance, statement: 

eqn j: 0 = -I; 

It is clear that the through equation is much more readable, whenever the model represents the current through the 

n for nonelectrical quantities would be: 

eqn {m,n}.t = g*{m,n}.a; 

ove equations means: through quantity flowing from flow 
m to flow n equals g times the difference of across quantities m and n. Extension '.t' reinforces type checking, 
so m a ver, Alecsis does not differentiate between 
across flows and through flows). 

All variations of through equation, which are given above for currents and voltages, are valid for flows, too. 

{m,n}.a + g2{i,j}.v; 

 
across quantity between flow m and flow n, and of voltage between node i and node j. 

        } 
    } 
} 

Ex
 flowing between node i and node j equals g times 
sion {i,j}.i r
n nodes. 

ion 7.4.1. This equation can be also written as: 

eqn {i,j}.i = g*{i}.v-{j}.v; 

eqn {i,j}.i = g*{i,j}; 

means that extensions on the right-hand side of

eqn {j}.i = g*{j,i}.v; 

where expression {i}.i on the left-hand side denotes the current flowing out of node i. 

eqn {i,j}.i = I; 

describes current source of value I. It is equivalent to two simple eqn statement: 

eqn i: 0 = I; 

component as some function of controlling quantities. 

An equivalent expressio

where extension '.t' denotes through quantity. The ab

nd n have to be links of type flow (of across nature -- howe

On the right-hand side, both nonelectrical and electrical variables can appear: 

eqn {m,n}.t = g1*

This equations states that the through quantity flowing between flow m and flow n is the function of



7. Analogue simulation in Alecsis 129 

Note: Extension on the left-hand side of the through eqn statement ('.i' or '.t') cannot be omitted. 
Only nodes or flows can appear on the left-hand side (it does not make sense to define the current flowing between 
quantit

), it can appear on the right-hand side of the equation, but without any 
extension (extension '.i' would be confusing, since {k}.i denotes current flowing out of node

ies of type current). On the right-hand side, extensions ('.v' and '.a') can be omitted, but are 
recommended to reinforce type checking.  

Note: Extensions '.i' or '.t' can appear only on the left-hand side of through eqn statement. It does 
not make sense to put expression {i,j}.i on the right-hand side of the equation, since current flowing between 
nodes i and j is not available as the solution of the system of equations. If link k is of type current (for instance, 
current through the voltage source named k

 k). For the 
reason

    action (double value) { 

alue * ddt{i,j}.v; 
        } 

 7.4.2. You can note that through 
eqn sta is model clearly describe model given by eqn. (7.8). 

s explained in this Note, extensions '.i' and '.t' cannot be used in simple eqn statement at all). 

Through eqn statement can describe differential equation, since operators ddt, d2dt2 and idt can be 
used, too. Here is an example of capacitor model: 

module new_capacitor (node i, j) { 

        process per_moment { 
            eqn {i,j}.i = v

    } 
} 

The model given above is fully equivalent to the first example from section
tement given in th

7.4.4. Across eqn statement 

As we are using nodal approach for solving the system of equations, we describe most of the models as 
throug owever some of the models cannot be described in this way. 
For in independent and controlled) have to be described as voltage 
dependence on other quantities. For that reason, we need modified nodal approach, where current through the 
branch is added as an additional unknown in the system of equation, and branch voltage equation is added as 
additio

      virtual process initial { 
alue; 

tage between node i and node j (in 
this ca he branch has also to be specified, since 
this is n the system matrix where this equation is added. The name of the current is given after keyword 
eqn, before the equation itself is given. In our example, the name of he current is new_vgen, and this is also the 
name of the module, declared as the current (this returning the current on the module name will be 
declare

h equations (current as function of voltages). H
stance, all kinds of ideal voltage generators (

nal equation. This can be easily described using across eqn equation. 

An ideal voltage source can be described in this way: 

module current new_vgen (i, j) { 
   action (double value) { 

         eqn new_vgen, {i,j}.v = v
      } 
   } 
} 

Expression {i,j}.v = value gives the dependence of vol
nstant voltage). In through equation, current through tse, this is a co

the row i

d later in this Chapter). It is important that this variable, representing the current through the branch, is 
declared as current before the functional description (action block). 

Across eqn statement 



130 Alecsis 2.3 - User’s manual 

eqn new_vgen, {i,j}.v = value; 

from the example above has the same contribution to the system of equations as three simple eqn statements: 

eqn i:                       1*{new_vgen} = 0; 
new_vgen} = 0;  

eqn new_vgen: 1*{i} -1*{j}                = value; 

These two descriptions define the same model stamp. 

eqn k, {i}.v = r*{k}; 

has the same effect as: 

eqn k, {i,0}.v = r*{k}; 

since 0 is always representing ground node. 

Across equation can be described for nonelectrical quantities (flows), too. An example is: 

eqn k, {m,n}.a = r*k; 

The quantity that represents difference of flow m and flow n equals r times quantity k. Links m and n 
have to ifference between 
across and through flows on declaration in this version of Alecsis). Link k has to be of type flow (of through 
nature)

Note: This Note is the same as for through eqn statement: Extensions '.i' or '.t' cannot appear on the 
right-h

Across eqn statement can be differential, i.e. operators ddt, d2dt2 and idt can be used. We have 
already

module newer_icap (node i, j) { 

      } 

This ac

apacitor model, we do not need current through the capacitor as new unknown in the system of 
equatio it is more natural to use through equation. However, to model inductance, we need that current, since 
voltage is dependent on the current: 

eqn j:                      -1*{

Across equation: 

 be of type flow, and of across nature, according to Table 7.1. (However, there is no d

. 

Note: Extension on the left-hand side of the across eqn statement ('.v' or '.a') cannot be omitted. 
Only nodes or flows can appear on the left-hand side. On the right-hand side, extensions ('.v' and '.a') can be 
omitted, but are recommended to reinforce type checking.  

and side of across eqn statement. If link k is of type current (for instance, current through the voltage source 
named k), it can appear on the right-hand side of the equation, but without any extension. 

 defined model of a capacitor, with the current through the capacitor is added as unknown to the system of 
equations, in section 7.4.2. (module newer_icap). This can be easily described using across eqn statement: 

   action (double value) {  
      process per_moment { 
         eqn newer_icap: {i,j}.v = 1./value*idt{newer_icap}; 

   } 
} 

ross eqn statement clearly describes model given by eqn. (7.9). 

For the c
n, so 

dt
diLv =  (7.10) 



7. Analogue simulation in Alecsis 131 

The inductor model using across eqn statement is: 

module current new_l (i,j) { 
   action (double value) { 
      process per_moment { 
         eqn new_l, {i,j}.v = value*ddt{new_l}; 
      } 
   } 

reakpoint 

} 

7.5. Appointed simulation in a time-instant -- b

Alecsis works with variable time-step. Time step is changed to meet demands on numerical integration error. 
For that reason, we cannot know in advance which time-instants would be chosen for simulation. However, in some 
particular cases, we want to force Alecsis to perform simulation in some particular time-instants. Function 
set_bpoint is used for that. It sets a breakpoint for a given time-instant (i.e. appoints simulation for that time-
instant

For instance: 

 would be shortened to meet the breakpoint. That means, it will not be allowed to jump over the 
breakpoi

process of action block. 

nt is used here to force simulation in corners of trapezoidal waveform. 

rithmetic, the appointed 
breakp

). 

set_bpoint(now+Period); 

appoints simulation for time instant that happens Period after current time (keyword now returns current 
simulation time). Simulation proceeds with normal time-step control until it approaches the breakpoint, and then the 
time step

nt. 

Function set_bpoint() can be used inside a 

An application example can be found in definition of module pulse (in file alec.hi in subdirectory 
sys that is normally installed with Alecsis.). This is definition of voltage generator of trapezoidal waveform. If 
time-step is large, corners of trapezoidal waveform can be missed. The simulation results are still correct, but the 
waveforms that are plotted out are not always nice -- corners of trapezoidal waveform can be cut out. Function 
set_bpoi

Note: As simulation time is variable of type double in floating-point a
oints cannot be met exactly, due to some rounding errors. 

7.6. Returning the link using name of a module 

We have already mentioned that some built-in elements have to be modelled using branch voltage equations. 
For these elements, current through the branch has to appear as new unknown in the system of equations. That 
current can be plotted out, or used as controlling current for other models, using the name of the built-in component. 
This is the same as in SPICE. 

omponent models. For that 
reason, AleC++ allows that the module name return the current (similarly as functions return variables - but here, it 
is not t

Our concept was that user defined modules can be used equally as built-in c

he value of the current that is returned, but the actual position in the matrix). 

We have already given such examples in the previous section, for instance, ideal voltage source model: 



132 Alecsis 2.3 - User’s manual 

module current new_vgen (i,j) { // new_vgen is name of the current 
   action (double value) { 
      virtual process initial { 

r current. However, when this module is 
used to module new_vgen
name: 

module Y (node i,j,p,q) { 

   ccvs Z;              // a current-controlled voltage source 

If we model the above voltage generator in the following way: 

  

nitial { 

} 

then no associ  and name of the current is established. Voltage source 
model 

f the module when the current is declared locally, inside 
the giv sed by another module? For instance, when current 
returne dule new_vgen  our module Y, too. An association can be 
established in such case: 

module current Y (node i,j,p,q){ // Y is also an current, 

odule Y also returns current under its name. It is the current returned by module 
new_ ponent Y 
is con
(Witho

 
new_

The compiler will not allow association of more than one component with the name of a module. 

         eqn new_vgen, {i,j}.v = value; 
      } 
   } 
} 

Here, current new_vgen is not declared separately, but when the module name is defined, as: 

module current new_vgen 

Current new_vgen can be used inside that module like any othe
s of type , each component of that type returns the current on its  declare component

   module new_vgen X;        // THIS DECLARES X AS CURRENT 

 
   X(i,j) action( 5); 
   Z(p,q,X) mi=1;       // current X is used for controlling 
} 

module newer_vgen (i,j) { 
   current k;                // separate declaration for current
  action (double value) {  

      virtual process i
         eqn k, {i,j}.v = value; 

    }   
   
} 

ation between name of the module
is correct, but it does not return any current under its name, and cannot be used in our module Y. 

This explains how to return current using the name o
en module. But what to do when this current is pas

 has to be returned byd by our mo

   module new_vgen Y;            // and it is returned by new_vgen 
   ccvs Z;  
 
   return Y(i,j) action( 5);     // keyword 'return' is necessary 
   Z(p,q,Y) mi=1;     
} 

In this example, m
vgen, and for that reason, component of type new_vgen also carries the name Y. When the com
nected, keyword return has to be used before the name Y, to point out the association of the names. 

n, Alecsis would consider this as name redeclaration, which is an error.) ut keyword retur

This works in the same manner if we use built-in component (e.g. vgen), instead of user defined module
vgen. 



7. Analogue simulation in Alecsis 133 

If you consider this too complex, you can return the current using list of formal parameters: 

module Y (node i,j,p,q; current X){ // formal param. X is current 
   module new_vgen X;         // and it is returned by new_vgen 
   ccvs Z;  

p,q,Y) mi=1;     

ng list of formal 
parame or bi-directional 
communi
represe

ponent cannot associate with the same formal parameter, because that would be a name 
redefin ty area (every component has its own current -- for example, every 
inducto  It is not legal to associate with a formal parameter that is not a 
scalar

 
   X(i,j) action( 5); 
   Z(
} 

Here, module Y does not return any current on its name, but it returns current usi
ters. As we have already explained, formal parameters of a module can be used f

cation, unlike parameters of C-like function. They are passed by reference, not by value, as they are 
nting position in the system of equations. Keyword return is here not used for association. 

More than one com
ition in the same structural visibili
r has a current flowing through it.)

. 

Note: Links of type charge and flow can be returned using name of the module, too. All what is 
here explained for links of type current, is also valid for charge and flow. However, this feature is 
introduced for links of type current, to make Alecsis compatible with SPICE.  

7.7. Variable number of action parameters 

The nu er of parameters in the header of the action block of the module can be variable. This is 
described in the Chapter 5, as it is the same for digital and analogue modules. 

mb

7.8. Modules with variable structure -- clone and allocate 

Some complex models cannot be easily described using standard Alecsis syntax. Sometimes we want that 
model 

• When some subcomponents appear in the module structure conditionally, depending on the model card 
parameters of action parameters. This can be, for instance, the case with resistances connected in series 

po e 

• To define regular subcomponent arrays of variable size. Some electronic circuits exhibit clear regularity. 

ls. It defines cloning of the previously described or built-in 
component. Cloning can be executed only in processes synchronized as structural, since execution of 
com
(stru

 clone cannot be classified as either structural or combined 
(structural-functional), since here execution of process structural determines structure of the model. 

card parameters or action parameters determine not only the behaviour, but also the structure of the 
model. There are two cases when this can be necessary: 

on com nent terminals, that are usually optional; or with whole optional subcircuits, e.g. som
compensation subcircuits for opamps, etc. 

Therefore, one can describe an array of variable size, where the size is an user-defined parameter. 

Command clone is used to describe such mode

mand clone defines the structure of the circuit. As this command is used inside a process 
ctural), it can be executed conditionally, or in a loop, depending on the user-defined parameters. 

Note: Models defined using command



134 Alecsis 2.3 - User’s manual 

The syntax of command clone follows all rules for component coupling: 

clone_command: 

component_list: 

nt_list component ; 

n we of variable size, it is clear that the number of links (e.g. 
termin  nodes) cannot be known in advance, too. So we need a mechanism to handle arrays of links of variable 
size. T ays is enabled using command allocate. 

can se one and allocate on the following example of ring oscillator: 

er(node vout, vin, vdd, vss) { 
wn; 

 mup d) { model=Mpmos; l=3u; w=8u; } 
   mdown (vout, vin, vss, vss) { model=Mnmos; l=w=3u; } 

   inverter inv; 
 

 

l { 
       allocate joint [size-1];   // dynamical allocation 

         warning("wrong number of inverters in ring", 1); 
       for (i=0; i<size; i++) { 

ne inv[0] (joint[0], vout, vdd, vss); 

             clone inv[i] (vout, joint[i-1], vdd, vss); 

(joint[i], joint[i-1], vdd, vss); 

s defined structurally, and that module inverter is used as 
compo nt inv of type 
inve  of nodes with the name joint. Command: 

is declaration of one-dimensional array of nodes. Length of that array is not yet defined, it will be done using 
comma e. 

  clone  body_of_command_clone 
 
  body_of_command_clone: 
  component ; 
  { component_list } 
 

  component ; 
  compone

Whe use command clone to create arrays 
al
hat dynamical allocation of link arr

We e application of both cl 

module invert
mosf   et mup, mdo

 
    (vout, vin, vdd, vd

} 
 
module ring_oscillator (vout, vdd, vss) { 

   node joint[auto];       // array of nodes (size not defined)

   action (int size = 3) { 
      process structura
  
         int i; 
         if (size < 3 || size % 2 == 0)  
   
  
            if (i==0)  
               clo
            else if (i==size-1) 
  
            else 
               clone inv[i] 
         } 
      } 
   }  
} 

In this example, an MOS inverter i
nent to be cloned into an array. In module ring_oscillator we have compone
rter declared. We also have declaration of an array

node joint[auto]; 

nd allocat



7. Analogue simulation in Alecsis 135 

We can note that module ring_ocillator has no structural part, i.e. declared component inv of 
type inverter is not connected in the structural part. 

allocate joint [size-1]; 

Array joint has length size-1, and zero-offset is used (from 0 to size-2). Parameter size is 

Note: Array of links can be have more dimensions, can have lower limit defined, etc. (all rules for Alecsis 
link ar

// array with offset 1; 

Inside the functional part (action block) a process structural is defined. In that process, array 
of nodes joint is allocated as: 

passed as an action parameter (default value is 3). 

ray apply). Example: 
allocate joint[1:size];        

 When array of links has more than one dimension, only the first 
dimension can be dynamically allocated. For example, you can declare: 

  node a[auto][j]; 
 but you cannot declare: 
  node a[auto][auto]; 
 We intend to improve it in following versions of Alecsis, but as it is a 

complex intervention, it might wait for some time! (Array of links is very 
different than array of variables in C/C++ - links are positions in the 
system of equations.) 

 If you need to dynamically allocate array of links with more than one 
dimension, you can either reorganize it as one-dimensional array (which 
is always possible); or you can use array with static allocation, and 
recompile the model when you change dimensions: 

  # define FIRST_DIM 150 
  # define SECOND_DIM 200 
  ... 
  node a[FIRST_DIM][SECOND_DIM]; 
 

In le of ring oscillator, parameter size is checked firstly (it cannot be an even number, 
 o fter that, a for loop is defined, where size instances of component inv are cloned. A

nt inv is connected between nodes joint[i] and joint[i-1] using command: 

[i] (joint[i], joint[i-1], vdd, vss); 

 our examp if we 
need an scillator). A  i-th 
instance of compone

dex [i] a  co owever, it is useful, as it enables us to approach 
the par ommand plot, for instance. 

his ring of inverters is a regular structure, but it has exceptions at the beginning, and at the end of the array 
(connections to output node vout). This is handled using if/else commands. 

clone int

In fter mponent name int can be omitted. H
ticular component int[i] later -- in c

T

From this example one can conclude that both the component to be cloned, and the array of links of variable 
size, have to be declared in the declarative part of the module. The actual size of the link array, and cloning of 
components, are in the action block, process structural. 



136 Alecsis 2.3 - User’s manual 

Note: Action parameters of cloned components can be different. However, if the component that is 
cloned has a model card, parameter model must be known in the compilation time (the model card name cannot be 
passed as a variable). 

is useful, as it enables us to approach the 
particular component int[i] later -- in command plot, for instance. Index becomes a part of the component 
name, om

e s1/s2/"comp[5]"/n1;   current "lserial[3]"; } 

ommands, we use cloned component name to define absolute path (to local link node n1 in 
the component "comp[5]"); or to get the values of current returned under module name 
("lse

In command: 

clone int[i] (joint[i], joint[i-1], vdd, vss); 

index [i] after component name int can be omitted. However, it 

and in c mand plot, it must be used inside quotation marks, without any blanks inside the quotations: 

plot { nod

In the above c

rial[3]"). 

Note: Commands clone and allocate apply to analogue, digital, and hybrid circuits in the same way, since 
nowhere in the syntax does the command demand a particular link type or component type. It is especially useful in 
digital simulation, for instance to describe registers of different lengths. 

 

 

 


